Интервал
Обозначение по системе сояьфедж ио
Гармоника
Частота
1.C
Унисон
До (1)
Основной тон
256 Гц
2.С
Октава
До (2)
1-й обертон
512 Гц
3. G
Чистая квннта
Соль (1)
2-й обертон
768 Гц
4. С
Октава
До (3)
3-й обертон
1024 Гц
5. Е
Большая"WM1*
Ми (1)
4-й обертон
1280 Гц
6. G
Частая мавта
Соль (2)
5-й обертон
1536 Гц
7. В-
М алая септика
Си-бемоль (1)
6-й обертон
1792 Гц
8. С
Октава
До (4)
7-й обертон
2048 Гц
9. D
Большая секунда
Ре(2)
8-й обертон
2304 Гц
10. Е
М алая секунда
Ми (1)
9-й обертон
2560 Гц
1 1. Fis-
У веяичен-ная кварта
Фа-диез (1)
10-й обертон
2816 Гц
12. G
Квинта
Соль (3)
1 1-й обертон
3072 Гц
13. А-
Малая секста
Ля-бемоль (1 )
12-й обертон
3328 Гц
14. В-
М алая септика
Си-бемоль (2)
13-й обертон
3584 Гц
15. Н
Большая септика
Си О)
14-й обертон
3840 Гц
16. С
Октава
До (5)
.15-й обертон
4096 Гц
11Форманта — акустическая характеристика звука речи (главным образом гласного), связанная с уровнем частоты голосового тона и образующая тембр звука Интервал — это соотношение высоты двух тонов. Представьте, например, что вы нажимаете две фортепианные клавиши. Соотношение их звучания и называется интервалом.Второй обертон, частота колебаний которого втрое выше частоты основного тона (то есть равняется 768 Гц), соответствует ноте соль, отстоящей от основного тона на октаву и квинту.Частота третьего обертона — 1024 Гц — превышает частоту основного тона в четыре раза. Соответствующая ему нота — до, отстоящая от основного тона на две октавы.Частота четвертого обертона — 1280 Гц — находится с частотой основного тона в соотношении 5:1. Нота ми отдалена от основного тона на две октавы и терцию.Пятый обертон имеет частоту, в шесть раз превышающую частоту основного тона, и соответствующая ему нота соль отстоит на октаву от второго обертона.Шестой обертон, чья частота выше частоты основного тона в семь раз, соответствует ноте, которую невозможно найти на клавиатуре обычных клавишных инструментов. Эта нота чуть ниже си-бемоля. Часто ее обозначают следующим образом: «В-».Седьмому обертону, чья частота восьмикратно превышает частоту основного тона, соответствует еще одна нота до, тремя октавами выше первой.Восьмой обертон: частота колебаний выше частоты основного тона в девять раз; соответствует ноте ре.Девятый обертон: соотношение с частотой основного тона — 10:1; соответствует ноте ми, отстоящей на октаву от четвертого обертона.Десятый обертон также соответствует ноте, несвойственной клавишным инструментам. Эта нота звучит чуть ниже фа-диеза и обозначается «Fis-».Частота одиннадцатого обертона превышает частоту основного тона в двенадцать раз. Нота соль, ему соответствующая, отстоит на октаву от пятого обертона.Еще одну не вполне обычную ноту образует двенадцатый обертон: ноту, звучащую чуть ниже ля («А-»).Соотношение частот тринадцатого обертона и основного тона — 14:1. Нота «В-» на октаву выше шестого обертона.
Четырнадцатый обертон, чья частота в пятнадцать раз выше частоты основного тона, образует так называемый натуральный тон си.Частота пятнадцатого обертона превышает частоту основного тона в шестнадцать раз, а образуемая им нота до отстоит от первой до на целых четыре октавы.Таковы обертоны первых четырех октав, образующиеся при нажатии одной клавиши инструмента, соответствующей ноте до — в данном случае основному тону. И это еще не все. Следует помнить, что теоретически число обертонов бесконечно. За каждой новой гармоникой стоит следующая — более высокой частоты, более высокого тона.ТЕОРИЯ МУЗЫКИ В НАУЧНЫХ ДИСЦИПЛИНАХПри изучении структуры звука важно помнить, что между его составляющими — обертонами, или гармониками,— существует строгая взаимосвязь. К примеру, частоты первого и второго обертонов соотносятся как три к двум, а соответствующие им ноты образуют интервал, называемый «квинтой». Эффективность звукотерапии во многом зависит от понимания этой взаимосвязи.Каждый тон в качестве основного дает свои особые обертоны, но закономерность соотношений неизменно сохраняется. Вернемся к приведенному выше примеру. Если обертоны ноты «до» выстроить в единый ряд, мы получим следующий звукоряд: С, D, Е, F#-, G, A-, В-, С. В Индии, где музыка возведена в ранг научной дисциплины, существуют тысячи разнообразных звукорядов, так называемых раг, каждая из которых призвана производить определенное эмоциональное, психологическое и этическое воздействие. Звукоряд, образованный гармоническими рядами первых четырех октав, именуется «рагой Сарасвати» — в честь индийской богини музыки и науки. Во многих культурах мира, в отличие от западной, музыка и наука не были разделены. В учениях древних мистических школ Греции, Индии, Тибета и Египта четко прослеживается идея о взаимосвязи этих двух дисциплин. Основой этой идеи служит тезис о том, что вибрация — это главная созидательная сила во Вселенной.Монохорд и теория ПифагораДревнегреческий бог Аполлон покровительствовал одновременно и музыке, и медицине. В Греции существовали особые храмы, куда приходили люди, страдающие от болезней. Главным орудием исцеления в этих храмах была музыка: приводя в гармонию тело и дух человека, она заставляла недуги отступить. Одним из самых выдающихся мыслителей Греции, чье учение не утратило актуальности и до сей поры, был Пифагор. Этот философ, живший в VI в. до н.э., больше известен сейчас как основоположник геометрии. Кроме того, он первым из ученых Запада установил соотношение между музыкальными интервалами.Ключом к этому открытию стал простейший музыкальный инструмент — монохорд, представлявший собой кусок дерева с единственной струной. Зажимая струну монохорда в отмеченных местах, Пифагор обнаружил, что между длинами получаемых отрезков и длиной целой струны существует определенное математическое соотношение. Тоны, составляющие гармонические интервалы с первоначальным тоном, появляются только в том случае, если соотношение длин звучащей части и целой струны представляет собой соотношение целых чисел, к приме-ру, 2:1, 3:2, 4:3. Эти целочисленные соотношения — архетипы формы, выражающей гармонию и равновесие, и в этом качестве они фигурируют в культурах самых разных народов.Если струну зажать посередине, разделив ее таким образом на две равные части, полученный тон составит с первоначальным тоном октаву. Частота вибрации половины струны составляет с частотой вибрации целой струны соотношение 2:1. Если же струну разделить на три равные части, мы получим соотношение 3:1. Деление на четыре отрезка дает соотношение 4:1. Если вспомнить приведенную выше таблицу соотношения обертонов, станет ясно, что принцип деления струны совпадает с этим соотношением.Вполне вероятно, что раздел арифметики, посвященный простым дробям, восходит к учению Пифагора о музыке. Древнему мыслителю приписывается следующее высказывание: «Изучайте монохорд, и вам откроются тайны мироздания». Одна-единственная струна дает человеку возможность постичь не только микрокосмический аспект феномена вибрации, но и макрокосмические законы Вселенной.Согласно учению Пифагора, сама Вселенная представляет собой грандиозный монохорд, чья струна протянулась от земли до небес. Ее верхний конец соединен с абсолютным духом, тогда как нижний — с абсолютной материей. Изучение музыки как точной науки ведет к познанию всех проявлений бытия. Пифагор прикладывал открытый им закон гармонических интервалов ко всем природным явлениям, стремясь доказать, что и стихии, и планеты, и созвездия связаны между собой гармоническими отношениями.Пифагору принадлежит учение о «музыке сфер»: он утверждал, что движение каждого небесного тела через космическое пространство рождает звук. Звуки эти способен услышать лишь тот, кто специально разовьет свой слух для этой цели. И тогда «музыка сфер» зазвучит для него гармоническими интервалами монохорда.Для Пифагора и его учеников понятие «музыка сфер» было не просто метафорой. По преданию, великий философ и в самом деле обладал способностью слышать, как плывут планеты по своим небесным орбитам. Проблема взаимосвязи звука и небесных тел на протяжении многих веков волновала умы многих мыслителей. И лишь недавно, используя математические принципы, основанные на вычислении орбитальной скорости планет, ученым удалось соотнести определенные звуки с определенными планетами. И вот удивительный результат: эти звуки оказались гармонически связанными. Быть может, удивительное умение древнего философа улавливать «музыку сфер» не было мифом.До сих пор мы рассматривали гармоники лишь как музыкальный феномен. Однако гармоники порождаются любой формой вибрации. Слуховые возможности человека далеко не беспредельны. Но тот факт, что наше ухо способно воспринимать колебания лишь от 16 до 25 000 Гц, вовсе не означает, что за пределами этого ограниченного диапазона не существует неисчислимого множества звуковых волн, которые мы просто не слышим. Вибрация порождает гармоники независимо от того, что именно является ее источником. А поскольку Вселенная, по сути, и состоит из вибраций, то каждый заключенный в ней объект — от электрона, вращающегося вокруг ядра атома, до планеты, вращающейся вокруг звезды, — обладает собственным основным тоном и обертонами.На острове Кротон располагалась школа Пифагора, где он посвящал неофитов в тайны Вселенной. Обучение в ней состояло из трех этапов. На первом уровне, где главным учебным пособием служил монохорд, ученики-«аку-стики» овладевали умением распознавать и затем воспроизводить различные музыкальные интервалы. Второй уровень— ступень «математиков» — был посвящен собственно цифрам и вычислениям. Он же был этапом духовного и физического очищения и достижения полного контроля над эмоциями и помыслами. Ученик мог перейти на следующий уровень лишь при условии, что и разум его, и тело достойны воспринять священное знание. На третьем, и высшем, этапе «избранные» ученики приобщались к таинствам духовного перерождения и исцеления музыкой.До наших дней дошли лишь скудные фрагменты того курса, которым завершалось обучение в школе Пифагора. Разработанные им теоремы и закон музыкальных интервалов сейчас являются неотъемлемым элементом математики и теории музыки, причем той их части, которую мы используем в повседневной жизни. А его философские концепции, такие как «музыка сфер», находят применение во все новых и новых эзотерических доктринах. Однако следует признать, что все это — процессы последних лет. До недавнего времени секреты исцеления с помощью звука и музыки были почти утрачены.(Монохорд — однострунный музыкальный инструмент, распространенный в Древней Греции и Риме, а также в Западной Европе до XIX в.)«ЛЯМБДОМА»Попытки восстановить тайное учение Пифагора о звуке не прекращаются и по сей день. Предметом особого интереса и горячих дискуссий среди ученых является загадочная схема, именуемая «таблицей Пифагора» или «таблицей лямбдомы». Считается, что «лямбдому» открыл Пифагор, а неопифагореец Ямвлих сохранил ее для потомков. «Лямбдома» — древняя теория, стоящая на стыке математики и музыки и связывающая музыку с учением о математических соотношениях.«Лямбдома» издавна привлекала к себе внимание математиков и других ученых. Считается, что она таит в себе глубокое эзотерическое знание о взаимоотношениях материи и духа, а также что она представляет собой числовое отображение Мировой Души.«Таблица лямбдомы» состоит из двух частей. В одной представлены частоты, соответствующие делению струны. Во второй — гармонические ряды, соответствующие этим частотам.Теория Кайзера и «лямбдома»В 20-е гг. XX в. немецкий ученый Ганс Кайзер разработал
на основе «лямбдомы» теорию мировых гармоник. Он об
наружил, что принципы гармонической структуры в приро
де описываются законом соотношения звуковых гармоник.
Самого себя и последователей своей теории Кайзер окре
стил «гармонистами». Много лет он посвятил возрожде
нию науки о гармониках, стремясь вернуть ей былую славу.
Исследование принципов, лежащих в основе взаимосвязи
между музыкой и математикой, считал Кайзер, позволяет
вывести законы взаимосвязи между тонами и числами.
Таким образом, становится возможным выводить качество
(тон, слуховое восприятие частоты) из количества (число)
и, наоборот, количество из качества. В своей работе «Ак-
роазис» (греч. — «слух, слуховое восприятие») Кайзер
писал: «Западная наука родилась в тот момент, когда была открыта и получила числовое выражение взаимосвязь между высотой тона и длиной струны — то есть была создана формула, позволяющая с предельной точностью выводить качество (высоту тона) из количества (длины струны или волны)».По мнению Кайзера, утрата этого древнего учения и стала причиной того, что между понятиями «наука» и «душа» пролегла непреодолимая пропасть. Однако он не переставал надеяться, что, преодолев забвение, наука о гармониках вновь свяжет в единое целое материю и дух.В соответствии с теорией Кайзера, принцип соотношения целых чисел лежит в основе не только учения о гармониках, но и множества других наук о живой и неживой природе — химии, физики, кристаллографии, астрономии, архитектуры, спектрального анализа, ботаники. Этот принцип нашел отражение не только в представлении о структуре звука, но и в периодической таблице элементов, и в учении о строении почвы.Приведу еще один отрывок из «Акроазиса», где Кайзер рассуждает о взаимосвязи между гармоническими рядами и листьями растений:«Если спроецировать все тоны в пределы одной октавы (как это сделал Кеплер в своей "Harmonice mundi"), прорисовав все соединительные отрезки, в результате получится схематическое изображение листа растения. Из этого следует, что октава, этот краеугольный камень любой музыкальной системы и основа слухового восприятия музыки, заключает в себе форму листа. Таким образом, получает новое, «психологическое» подтверждение теория Гёте об эволюции растений, выводящая, как известно, многообразие растительных форм из простейшей формы листа. Многообразие форм цветка — 2 (4, 8...), 3 (6, 12...), 5(10...) — можно рассматривать с точки зрения гармонии в качестве морфологических параллелей, соответствующих интервалам трезвучия... Только представьте себе, что это означает, когда в одном цветке одного растения проявляется точное деление на три и в то же самое время — на пять. Даже самым ярым скептикам придется признать, что в душе каждого растения заключен некий формообразующий прототип (в данном примере — терции и квинты), придающий цветку, как и музыке, определенную форму по сходству с музыкальными интервалами».Гармоники в архитектуреВ рамках своего учения о звуке Кайзер разработал теорию взаимосвязи законов гармоник и архитектуры. Впрочем, эту взаимосвязь еще веком раньше подметил Гёте, которому принадлежит знаменитое высказывание: «Архитектура — это застывшая музыка». В такой афористичной форме Гёте выразил идею о том, что принцип соотношения гармоник приложим и к области конструкций и сооружений. Далеко не все формы, встречающиеся в геометрии и природе, подчинены закону гармонических соотношений, но, по мнению Кайзера, именно формы, соотносящиеся с гармоническими рядами, представляются нам наиболее красивыми. Особенной соразмерностью и гармоничностью отличаются те конструкции, между со-ставными элементами которых существует соотношение, осиованиое на октаве (2:1), кварте (3:2) и терции (5:4). Этот закон был прекрасно известен в древних школах мистерий. Не случайно самые прекрасные из афинских, римских и египетских храмов основаны именно на этих пропорциях.В таблице 2.2. представлены целочисленные соотношения, встречающиеся в гармонических рядах:Таблица 2.2.Целочисленные соотношения в гармонических рядахОктава
1:2Квинта
2:3Кварта
3:4
Большая секста
3:5
Большая терция
4:5
Малая терция
5:6
Малая секста
5:8
Малая септима
5:9
Большая секунда
8:9
Большая септима
8:15
Малая секунда
15:16
Тритон
32:45
«Золотое сечение»Особое значение древние архитекторы придавали геометрической пропорции, именуемой «золотым сечением». «Золотое сечение» — это деление отрезка на две части таким образом, что отношение целого к большей части равно отношению большей части к меньшей, т.е. a:b = b:(a+b). Соотношение величин в «золотом сечении» зачастую совпадает с соотношением между тонами большой сексты (3:5) и малой сексты (5:8). Принцип «золотого сечения» приложим и к пропорциям человеческого тела. Если разделить человеческое тело на две части по высоте, проведя горизонтальную линию через пупок, мы получим соотношение величин «золотого сечения». И те же пропорции даст нам деление человеческого тела с раскинутыми руками по ширине (в данном случае — вертикальной линией, проходящей через сосок). Точка в области паха делит расстояние от подошв до сосков на два неравных отрезка, соотносящихся друг с другом по принципу «золотого сечения». Те же пропорции обнаруживаются и в соотношениях многих других частей человеческого тела: в соответствии с «золотым сечением» расположено колено на ноге, линия бровей на лице, локтевой сустав на руке. Пропорции большой и малой секст — 3:5 и 5:8 — свойственны строению не только человеческого тела, но и тел животных (в том числе насекомых) и также растений. ДОКТОР ЙЕННИ И КИМАТИКАДоктор Ханс Йенни, швейцарский ученый, посвятил десять лет жизни изучению воздействия звука на неорганическую материю, фиксируя результаты этого воздействия на фотопленке. Он размещал на стальных пластинах различные вещества — воду или иные жидкости, пластмассу, смолу, глину, пыль — и приводил пластины в колебательное движение с различной частотой. Его предшественником и главным вдохновителем был немецкий ученый Эрнст Хладни (1756 — 1827), также проводивший эксперименты со звуком. Хладни насыпал песок на стеклянную пластину н, водя по краю пластины скрипичным смычком, заставлял стекло вибрировать. И песчинки на стекле складывались в прекрасные симметричные узоры.Доктор Йенни продолжил исследования Хладни в области взаимосвязи между звуком и формой. Не одну тысячу часов он выяснял экспериментальным путем, как воздействуют звуки различной частоты на неорганические вещества. Среди сотен фотоснимков, сделанных им и его помощниками, есть изображения, подобные по форме морским звездам, органам человеческого тела, микроорганизмам и обитателям подводного мира. Порождены же эти изумительные формы кусками обычной пластмассы, горками пыли и другими субстанциями, подвергнутыми воздействию звука.Свою работу доктор Йенни назвал «киматикой» (от греческого кута — «волна»). Киматика - это наука о формообразующих свойствах волн. Уже найдены доказательства того, что звук обладает способностью творить форму. Неодушевленные предметы — капли воды, шарики смолы и другие материалы в опытах доктора Йенни, — подвергнутые воздействию звуковых волн, сами приходили в волнообразное движение. А затем медленно, постепенно обретали четкие очертания. Эти прежде бесформенные комки, пронизанные звуком, бились и пульсировали. Казалось, будто они состоят из живой плоти и дышат. Однако секрет, разумеется, заключался лишь в чудодейственной силе звука. Как только он стихал, всякое движение прекращалось, и на пластинах снова лежали бесформенные комки неорганической материи. Во втором томе «Киматики» доктор Йеннн пишет:«Теперь уже не вызывает сомнений, что и в сфере неорганической материи, и в мире живой природы действуют одни н те же законы гармонической организации... Во-первых, мы наглядьо показали, что гармонические системы, представленные в наших экспериментах, возникают под действием колебаний в форме интервалов и гармонических частот. Это неочюримо».В соответствии с теорией доктора Йенни между гармониками и гармоническими структурами существует взаимосвязь. Различные неорганические субстанции обретали форму под воздействием гармоник с различной частотой колебаний, образующих между собой гармонические интервалы.Подобного же эффекта добилась Барбара Хироу при помощи лазера и сканирующего устройства. Она помещала зеркало под акустическую систему. Когда система производила два звука с разной частотой колебаний, зеркало начинало вибрировать. Затем на зеркало направляли лазер. Луч его отражался на экран, воспроизводя на его поверхности образы, возникавшие под действием звука. Оказалось, что интервалы, образованные гармоническими рядами, порождают устойчивые и геометрически совершенные формы, например, круги, державшиеся на экране до тех пор, пока звук не смолкал. Негармонические же интервалы порождали формы, геометрически несовершенные и неустойчивые, быстро распадавшиеся.Аналогичные эксперименты Барбара Хироу проводила и с человеческим голосом — и добивалась тех же результатов. Когда участники эксперимента выпевали две ноты, составляющие гармонический интервал, на экране возникали симметричные, геометрически совершенные формы. Результат был особенно ярким и убедительным в тех случаях, когда певцы производили не обычные звуки, а вокальные гармоники. Если же голоса певцов не составляли гармонического интервала, симметрия в изображении отсутствовала.Главным предметом исследований доктора Йенни было воздействие волн различной частоты на неорганические вещества. Однако исцеляющая и преображающая сила, заложенная в человеческом голосе, также вызывала у него живейший интерес. Свою книгу «Киматика» он завершил следующими словами:«Но главная работа в области изучения мелоса, или речи, нам еще только предстоит. Тем самым в орбиту наших исследований будут вовлечены функции голосового аппарата. Главная цель нашей работы — постичь природу необычайного воздействия звуковых колебаний на природные объекты. И одним из основных предметов наших исследований должен стать голосовой аппарат как созидательный — и в своем роде всемогущий — орган».Наука о гармониках выявила такие свойства звука, которые находят применение и в математике, и в физике, и во многих других естественно-научных дисциплинах. Все элементы Вселенной гармонически связаны между собой, и ключом к постижению этой гармонии и открытию преображающей и врачующей силы звука может стать изучение человеческого голоса. Доктор Йенни одним из первых подошел к этой проблеме с чисто научной стороны. Однако уже на протяжении многих веков феномен человеческого голоса изучают в теории и на практике последователи различных духовных дисциплин и эзотерических течений.
rodobozhie.ucoz.ru
Пожаловаться